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Abstract

Contemporary ADS and ADAS localization tech-
nology utilizes real-time perception sensors such as 
visible light cameras, radar sensors, and lidar 

sensors, greatly improving transportation safety in suffi-
ciently clear environmental conditions. However, when lane 
lines are completely occluded, the reliability of on-board 
automated perception systems breaks down, and vehicle 
control must be returned to the human driver. This limits 
the operational design domain of automated vehicles signifi-
cantly, as occlusion can be caused by shadows, leaves, or 
snow, which all occur in many regions. High-definition map 
data, which contains a high level of detail about road features, 
is an alternative source of the required lane line information. 
This study details a novel method where high-definition map 
data are processed to locate fully occluded lane lines, 
allowing for automated path planning in scenarios where it 
would otherwise be impossible. A proxy high-definition map 
dataset with high-accuracy lane line geospatial positions was 

generated for routes at both the Eaton Proving Grounds and 
Campus Drive at Western Michigan University (WMU). 
Once map data was collected for both routes, the WMU 
Energy Efficient and Autonomous Vehicles Laboratory 
research vehicles were used to collect video and high-accu-
racy GNSS data. The map data and GNSS data were fused 
together using a sequence of data processing and transforma-
tion techniques to provide occluded lane line geometry from 
the perspective of the ego vehicle camera system. The recov-
ered geometry is then overlaid on the video feed to provide 
lane lines, even when they are completely occluded and invis-
ible to the camera. This enables the control system to utilize 
the projected lane lines for path planning, rather than failing 
due to undetected, occluded lane lines. This initial study 
shows that utilization of technology outside of the norms of 
automated vehicle perception successfully expands the oper-
ational design domain to include occluded lane lines, a 
necessary and critical step for the achievement of complete 
vehicle autonomy.

Introduction

The US Centers for Disease Control and Prevention 
(CDC) and the US National Highway Traffic Safety 
Administration (NHTSA) report that motor vehicle 

accidents account for nearly 40,000 US deaths in 2019 and 
comprised the 13th leading cause of death in the US in 2016 
and 2017 [1, 2, 3]. CDC data indicates the estimated cost of 
US motor vehicle fatalities to be about $390 billion in 2019 
when accounting for both medical costs and economic 
productivity losses [4]. Additionally, motor vehicle traffic 
crashes consistently rank the 7th greatest contributor to years 
of life lost, as they disproportionately cause more deaths to 
younger people [3]. In response to the great cost of motor 
vehicle accidents, the emerging technological field of vehicle 
automation seeks to mitigate motor vehicle accidents and 
injuries. While in the future, high levels of autonomy through 
Automated Driving Systems (ADS) and Autonomous Vehicles 
(AVs) will be available, some vehicles available today offer 

Advanced Driver Assistance Systems (ADAS) features to 
improve safety.

ADAS features such as lane departure warning (LDW), 
lane keeping assistance (LKA), and lane centering assistance 
(LCA) can dramatically improve motor vehicle safety. LDW 
reduces single-vehicle, sideswipe, and head-on injury crashes 
by 21% [5]. It is estimated by Benson et al. that LDW and LKA 
could have prevented about 520,000 crashes in 2016, associated 
with about 190,000 injuries. They also report that ADAS tech-
nology at large has the potential to mitigate 40% of all 
passenger vehicle crashes, and about 30% of all crash-related 
deaths [6]. In terms of the cost of motor vehicle accidents, 
Harper, Hendrickson, and Samaras estimate that incorpo-
rating ADAS features into the entire US light-duty vehicle 
fleet would lead to an annual net savings of between $4 billion 
to $215 billion when considering the cost of the technology 
and the cost of motor vehicle crash injuries and deaths [7]. 
ADAS has also been demonstrated to be useful for enabling 
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energy efficiency improvements for individual vehicles [8, 9, 
10, 11]. But, these ADAS features have an operational design 
domain (ODD) limited to unoccluded lane lines, as they work 
by using real-time perceptive sensors such as computer vision 
(CV) to detect road features, primarily lane lines, which are 
normally visible in clear driving environments [12, 13, 14]. 
However, many vehicle crashes occur in inclement weather, 
where road features can be completely occluded by snow or ice.

In fact, while vehicles regularly travel less in winter 
seasons as evidenced by seasonal vehicle-miles-traveled 
trends, the inclement driving environment conditions associ-
ated with the colder seasons leads to increased vehicle acci-
dents and fatalities [15, 16], as seen in Figure 1. According to 
the Federal Highway Administration (FHWA), approximately 
21% of all vehicle crashes in the US from 2007 to 2016 were 
weather-related [17]. The ODD of vehicle autonomy does not 
effectively include inclement weather conditions where lane 
lines are occluded, as perception systems lack the necessary 
input to determine road geometry [18, 19]. It is estimated that 
approximately 70% of US roads are located in snowy regions, 
meaning for higher levels of automation throughout the conti-
nental US, the ODD of automated vehicles must be expanded 
to handle roads occluded by snow and ice [20].

Greater connectivity of the vehicle to the internet of 
things has great potential to aid automated vehicle technolo-
gies [21]. Specifically, the utilization of high-definition maps 
for localization of the ego vehicle has been shown to have great 
potential. High-definition maps are datasets that contain 
highly detailed regional data, far surpassing the minimum 
level of detail required for road network route planning as is 
available in standard maps. Notably, they can include the 
positions of road features such as traffic signs, road shape, and 
lane lines [22]. Little research has focused on occluded lane 
line scenarios, despite the potential for safety improvements. 
Poggenhans, Salscheider, and Stiller present a method of local-
ization where high-definition maps are queried with estimated 
lane line locations to determine the true ego vehicle position. 
This method begins to lose accuracy in inclement weather and 
relies on real-time perception of road markings, thus would 
likely break down when lane lines are occluded, similar to the 
current state-of-the-art [23]. VSI Labs described use of high-
definition maps in their study, where lane lines were used 
directly as an input to the ego vehicle control system, but their 
exact methodology appears to be proprietary and confidential 
[24]. High-definition maps have the potential to increase the 
level of automation of ADS technology, but no method exists 

with sufficient ability to operate in occluded lane line scenarios. 
In this paper we describe a novel method for utilizing high-
definition map data to expand the ODD of ADS and ADAS 
technologies to occluded lane line scenarios.

Methods

Data Collection
Though high-definition maps often include lane line geometry, 
to avoid the cost of a high-definition map service for this study, 
data was collected manually over two distinct routes in order 
to generate a proxy high-definition map. The collection of this 
data is detailed to give more context for the results and to 
inform those who wish to replicate this study without 
purchasing a high-definition map service subscription. The 
first route was selected to be a portion of the Eaton Proving 
Grounds main test track in Marshall, Michigan, shown in 
Figure 3. This route contained a straight section, followed by 
a curve to the left surrounded by trees. The second route was 
selected to be the Campus Drive loop near Western Michigan 
University’s Parkview Campus, shown in Figure 4. This route 
consisted of a winding, continuously curving road segment. 
Several hundred extremely high-precision geospatial points 
were collected along the right and left lane lines for each route 

 FIGURE 1  Percent changes in crash rate due to inclement 
weather [16].

 FIGURE 3  Collected lane line points at the Eaton Proving 
Grounds test track.

 FIGURE 2  Trimble Catalyst DA2 GNSS receiver [25].
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using a Trimble Catalyst DA2 GNSS receiver, as shown in 
Figure 2, which advertises an accuracy of 2 centimeters when 
using the Catalyst 1 subscription level. High accuracy geospa-
tial data was especially important in this study, as the lane 
lines are relatively small and any substantial displacement 
degrades the results significantly. The distance between 
collected points was varied, with the Eaton Proving Grounds 
data being regularly sampled every 50 feet, and the Campus 
Drive data being sampled about every 10 feet. These both 
proved to be a small enough sampling distance to sufficiently 
describe gently curving roads, so it is likely that larger 
sampling distances would perform reasonably well.

To achieve smoothed lane lines over both routes, all lane 
lines points were put in order along the route and cubically 
interpolated, resulting in many equidistant geospatial points. 
This interpolation of geospatial points should theoretically 
be mapped to true distances before interpolation, as the length 
of latitude and longitude increments is not constant over 
Earth, but at this relatively small scale the error is negligible. 
After this step, the proxy high-definition maps for both routes 
were complete.

The Western Michigan University (WMU) Energy 
Efficient and Autonomous Vehicles Laboratory research 
vehicles, shown in Figure 5, were then used to collect data over 
both routes. The Kia Niro Hybrid was used at the Eaton 
Proving Grounds, and the Kia Soul Electric Vehicle was used 
to collect data over the Campus Drive route. Both vehicles 
were equipped with the same sensor suite, including but not 
limited to a Stereolabs ZED 2i stereo camera (Figure 6) and a 
Swift Navigation Duro Inertial RTK GNSS receiver (Figure 
7), which advertises 4 centimeter accuracy when using the 
Skylark Precise Positioning service.

The ego vehicles were driven over the selected routes and 
data was collected from the camera, IMU, and GNSS receiver 
using the Robot Operating System (ROS). The ego vehicle was 
operated by a human driver, driving no more than 25 miles 
per hour. A data processing methodology was developed to 
project lane lines over the camera feed utilizing the sensor 
data in various ways.

 FIGURE 4  Collected lane line points over the Campus 
Drive loop.

 FIGURE 5  WMU EEAV Lab research vehicles.

 FIGURE 6  Stereolabs ZED 2i stereo camera [26].

 FIGURE 7  Swift Navigation Duro Inertial RTK GNSS 
receiver [27].

 FIGURE 8  Frame from image data collected over the Eaton 
Proving Grounds test track.

 FIGURE 9  Frame from image data collected over the 
Campus Drive loop.
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Data Processing
The overarching goal of data processing was to transform the 
geospatial points of both the lane lines and the ego vehicles 
into a local coordinate frame aligned with the camera, where 
the data could be overlaid and given to camera-based path 
planning systems. To do this, several coordinate transforma-
tions were necessary. All points were transformed from the 
WGS 1984 coordinate system to the north, east, down (NED) 
coordinate system, with the origin specified as the ego vehicle 
GNSS base station. This transformation brings the data from 
a global coordinate system into a right-handed local coordi-
nate system. The NED coordinate system was chosen over the 
east, north, up (ENU) coordinate system in order to best 
match the coordinate system of the camera, shown in Figure 
10, as well as the pinhole camera model coordinate system 
used by the OpenCV Python/C++ library. The coordinate 
transformation of the lane line points to the NED system was 
handled by the pymap3d Python library.

Next, the local NED coordinate frame needed to 
be rotated to align with the ego vehicle heading. However, the 
sampling rate of the vehicle heading was insufficient for real-
time alignment of the lane line points, especially for curved 
road segments. To better align with the vehicle over time, IMU 
data were then used to interpolate the vehicle heading. 
Measurements of the angular velocity were multiplied by 
elapsed time to provide angular adjustments to the heading 
as shown in Equation 1. In summary, the coordinate frame 
was rotated by the adjusted heading 𝜃 about the down axis. 
This can be represented as shown in Equation 2, where the 
x-axis is right, the y-axis is down, and the z-axis is forward. 
This rotation is shown graphically in Figure 11.

 � � �� �0
�t  (1)

where:

 • θ0 is the heading reported by the sensor,

 • θ  is the angular velocity about the IMU (up) z-axis,

 • Δt is the time elapsed from the heading sample, and

 • θ is the adjusted heading
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Once all points were rotated to the new XYZ coordinate 
system, offsets in each direction were used as appropriate to 
translate from the base station GNSS receiver to the left camera. 
Once this was complete, all lane line points had been trans-
formed from the global WGS 1984 coordinate system to the 
local XYZ coordinate system used by the camera. Next, the 
points needed to be projected onto the camera image feed, 
applying a maximum-distance threshold if desired. To do this, 
the pixel location (u, v) of each point must be found, which can 
be done given the XYZ coordinates and intrinsic camera prop-
erties retrieved from the camera metadata. The point projection 
method equations below are summarized from the OpenCV 
documentation, following the notation in Figure 12 [29].

First, the ratios of the x- and y-coordinates to the z-coor-
dinate of the point are calculated, and the hypotenuse of the 
x- and y-coordinates r is found.
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 FIGURE 11  NED to XYZ coordinate frame rotation.

 FIGURE 10  Stereolabs ZED camera coordinate frame [28].
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The relevant camera properties were the radial distortion 
coefficients k1, k2, and k3, the tangential distortion coefficients 
p1 and p2, the principal point coordinates cx and cy, and the 
focal lengths fx and fy. These properties can be used to find an 
intermediate result in both the x- and y-directions. The addi-
tional radial distortion coefficients k4, k5, and k6 and thin 
prism distortion coefficients s1, s2, s3, and s4 were not necessary 
and are excluded here.
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Finally, the projected pixel location (u, v) of the point is 
found using the focal lengths fx and fy and the principal point 
x- and y-coordinates cx and cy.
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Sequential application of Equation 3 through Equation 6 
results in the appropriate pixel locations of all 3-dimensional 
points projected onto the 2-dimensional camera image. This 
is the basis for augmentation of a camera-frame path planning 
algorithm with high-definition map lane line geometry, 
without the need for line-of-sight to the lane line.

Additionally, for a sense of distance, a radius or 
diameter rpoint for each point to be drawn can be calculated 
by dividing a size scaling factor s by the distance of the 
point from the origin, and rounding the result to the 
nearest integer. This is shown in Equation 7 and Equation 
8. Alternatively, as shown in this study, a polygonal chain 
can be drawn connecting all points for a result that most 
closely imitates lane lines.

 dist X Y Zc c c� � �2 2 2  (7)

 r round s distpoint ( )= /  (8)

Artificial Occlusion of Lane 
Lines
For result comparison, lane lines were extracted from the data 
using CV techniques. Hue/saturation/lightness thresholding 
masks were created to isolate yellow and white lane line pixels. 
While this did successfully identify the appropriate pixels, 
many pixels from the sky and background passed through the 
threshold. To remedy this, a second processing step was taken 
where a region of interest (ROI) mask crops the image to a 
trapezoidal shape. The values of the threshold masks and the 
shape of the ROI mask differed between the two datasets due 
to different camera orientation and different lighting condi-
tions. This provided a basic methodology for extraction of 
lane line pixels.

Data along both routes could not be collected when lane 
lines were occluded, e.g. by collected snow or leaves. For this 
reason, lane lines in the camera feed were artificially occluded 
using further video postprocessing, thereby simulating road 
coverage conditions. The concept of postprocessing the 
camera feed in order to simulate different conditions is not 
entirely novel – Rubaiyat, Qin, and Alemzadeh utilized a 
similar method in their study in order to analyze resilience 
of autonomous vehicles to disturbed camera input [30]. The 
specific postprocessing methodology chosen was to use 
extracted lane line pixels and draw circles at each, using 
approximately the same color as the road surface. This resulted 
in the camera feed now having fully occluding lane lines, 
making normal detection of lane lines through CV or machine 
learning techniques impossible. Indeed, if one applies the 
same lane detection CV technique to detect lane lines on these 
processed images, no detections would be possible. The result 
of this CV image processing is shown for the Eaton Proving 
Grounds test track route in Figure 13, and for the Campus 
Drive loop route in Figure 14. Lane line geometry extracted 
from the proxy high-definition map was drawn on top of these 
images to demonstrate that the methodology is entirely inde-
pendent of camera-based lane line detections. The occluded 
lane lines shown in subsequent figures does not perform 
perfectly, but as this was just for demonstration purposes 
current results are satisfactory.

 FIGURE 12  OpenCV pinhole camera model coordinate 
frame [29].

 FIGURE 13  Eaton Proving Grounds test track camera frame 
with lane lines artificially occluded; compare to Figure 8.
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Metrics of Evaluation
Data Accuracy Metrics The most important metric for 
ensuring the quality of collected data was horizontal and 
vertical accuracy. These metrics are reported by both the 
Trimble Catalyst DA2 handheld sensor as well as the Swift 
Navigation Duro Inertial sensor. The Swift Navigation Duro 
Inertial sensor also operates in several accuracy modes, 
depending on satellite visibility and mobile network condi-
tions. The highest accuracy mode is RTK fixed, determined 
by the number of visible satellites and whether the rover is 
receiving corrections from the base station. The goal of data 
collection was to keep collected lane line points accurate to 2 
centimeters, and to keep the ego vehicle GNSS system oper-
ating in RTK fixed mode, accurate to 4 centimeters.

Lane Line Overlay Metrics At present, no metrics exist 
for quantitative analysis of projected lane line accuracy. The 
scope of this study did not include development of such a 
quantitative metric, instead a qualitative analysis showcasing 
the current strengths and areas of improvement was selected. 
Among the hypothesized metrics was quantification of the 
mean intersection over union over the drivable region, that is, 
the area bounded between the two lane lines. Another metric 
hypothesized involves using the transformed high-definition 
map lane line data to construct mathematical equations for 
the lines on the image, and quantify the geometric distance 
of detected lane line pixel locations as the error. We highlight 
the need for exploration and development of a quantitative 
metric as a topic for future work in the conclusions of 
this study.

Results

Data Accuracy Analysis
In the lane line data collected with the Trimble Catalyst DA2 
sensor over the Campus Drive route, the horizontal accuracy 
of the collected lane line points never exceeded 2 centimeters, 
and the vertical accuracy never exceeded 5 centimeters. 
Weather conditions and mobile network strength were poorer 

at the Eaton Proving Grounds test track, so despite multiple 
attempts, the maximum horizontal accuracy reached 7 centi-
meters, and the maximum vertical accuracy reached 25 centi-
meters. In general, most collected points had a horizontal 
accuracy between 1 to 3 centimeters and a vertical accuracy 
between 6 to 9 centimeters. The lane line data collected along 
both routes were more than sufficient to create the proxy high-
definition map.

The Swift Navigation Duro Inertial sensor consistently 
operated in the highest accuracy fixed RTK mode for the 
duration of the Campus Drive route. As such, the Campus 
Drive route data has very good accuracy; the horizontal 
accuracy of the ego vehicle GNSS receiver was at most 5.0 
centimeters, and the vertical accuracy was at most 7.2 centi-
meters. The ego vehicle GNSS receiver faced more accuracy 
challenges at the Eaton Proving Grounds test track, switching 
from fixed RTK to float RTK mode near the end of the route, 
when the vehicle was surrounded by trees.

Lane Line Overlay Analysis
Eaton Proving Grounds Test Track The projected 
lane lines in the straight road segment of the Eaton Proving 
Grounds route align very well with the true lane line locations, 
and little deviation is observed. This shows the methodology 
holds promise for determination of occluded lane lines, 
especially for straight roadways. Two example results from 
this segment are shown in Figure 15.

 FIGURE 14  Campus Drive camera frame with lane lines 
artificially occluded; compare to Figure 9.

 FIGURE 15  Two examples of Eaton Proving Grounds 
camera frames from straight road segments with high-
definition map lane line data overlaid on artificially occluded 
lane lines. These show well-aligned lane lines.
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When the ego vehicle entered the more wooded area, the 
Swift Navigation Duro Inertial sensor switched from the 
higher-accuracy RTK fixed mode to the lower-accuracy RTK 
float mode. This resulted in a divergence of the projected lane 
lines away from the true lane lines. Curves present a challenge 
to this method, even in RTK fixed mode, as discussed further 
in the following Campus Drive route results. This divergence 
is shown in Figure 16.

Campus Drive Loop The transformed and projected lane 
line geometry aligns well with the lane line pixels in the 
Campus Drive dataset in straight road segments as well, as 
shown in two examples in Figure 17. The text overlaid on the 
images shows the instantaneous Swift Navigation Duro 
Inertial sensor accuracy and operating mode. Note that the 
Eaton Proving Grounds dataset did not include this accuracy 
data due to technical limitations at the time of collection.

The largest challenge in this dataset was caused by 
heading sensor sampling rate and the constantly curving road. 
As the road curves, any delay in the heading data will cause 
lateral misalignment of the projected lane lines. This is why 
IMU data was utilized for corrections, as described in 
Equation 1. This is shown in Figure 18. These results show that 
in order to most accurately overlay lane line geometry using 
high-definition map data, in addition to very high sensor 
accuracy, the ego vehicle IMU and GNSS sensors must sample 
at a very high rate, otherwise the projected lane lines will 
become misaligned with the true lane lines in curves. This 
problem is less apparent for straight road segments, where the 
sensed ego vehicle heading does not change much.

Results Summary
Overall, the results of this proof-of-concept study are encour-
aging. Lane line geometry was successfully transformed from 
a proxy high-definition map into a local coordinate frame, 
then projected onto the camera feed. This allows for the 
control system of the ego vehicle to utilize high-definition 
map data in the same way that it would have used 

camera-detected lane line data, thus solving the problem of 
lane line occlusion. These results show that this methodology, 
with sufficient further development, can be used to assist the 
ego vehicle controller when lane lines become occluded, such 
as by shadows, leaves, or snow on the road surface.

One challenge with the development of this technology 
is alignment of the lane lines in curved road segments. Any 
rotation of the ego vehicle not captured frequently enough 

 FIGURE 16  Eaton Proving Grounds camera frame from a 
curved road segment with high-definition map lane line data 
overlaid on artificially occluded lane lines. Deviation from true 
lane lines occurs in this curved road segment due to the GNSS 
operating in lower-precision RTK float mode and the 
insufficient sampling rate of the GNSS heading sensor.

 FIGURE 17  Two examples of Campus Drive camera frames 
from straight road segments with high-definition map lane line 
data overlaid on artificially occluded lane lines. These show 
well-aligned lane lines.

 FIGURE 18  Campus Drive camera frame from a curved 
road segment with high-definition map lane line data overlaid 
on artificially occluded lane lines. Deviation from true lane lines 
occurs in this curved road segment due to the insufficient 
sampling rate of the GNSS heading sensor.
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will effectively cause a drift of the projected lane lines away 
from the true lane lines. A very frequently sampled heading 
sensor could address this challenge. Further development of 
quantitative metrics is also suggested.

Conclusions
In this paper, we describe and demonstrate a novel method-
ology to extract lane line geometry through high-definition 
maps, without the use of real-time camera perception. The 
lane lines from the high-definition maps were transformed 
from a global coordinate frame to a local coordinate frame 
aligned with the camera, and then projected onto the image. 
This results in the lane lines effectively becoming visible once 
again and able to be used by the path planning process that 
would otherwise be inoperable due to lack of input. Overall 
the results show that this technology concept can be used for 
augmenting vehicle automation in occluded lane line 
scenarios. The reconstructed lane lines align very well with 
the true lane lines in straight road segments, but challenges 
presently exist with overlay accuracy in curved roads and 
when GNSS accuracy degrades due to obstruction by trees.

This methodology provides a foundation from which to 
build an automated navigation procedure robust to lane line 
occlusion. Perception technology that breaks out of the estab-
lished norms of camera, radar, and lidar sensing is needed to 
address the problems of resilient operation and operation in 
inclement weather. This initial study should be expanded 
through development of a quantitative measurement in order 
to rigorously define the accuracy of projected lane lines and 
enable refinement of the methodology. This could also 
be compared with artificial intelligence/machine learning 
based lane line detection algorithms to analyze performance 
relative to the current state of the art. Furthermore, this meth-
odology can be applied to winter driving, where lane lines 
may be occluded by snow collected on the road surface and 
line-of-sight to satellites can be disturbed by cloudy weather 
or precipitation.
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