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Abstract

Modern vehicles use automated driving assistance 
systems (ADAS) products to automate certain 
aspects of driving, which improves operational 

safety. In the U.S. in 2020, 38,824 fatalities occurred due to 
automotive accidents, and typically about 25% of these are 
associated with inclement weather. ADAS features have been 
shown to reduce potential collisions by up to 21%, thus 
reducing overall accidents. But ADAS typically utilize camera 
sensors that rely on lane visibility and the absence of obstruc-
tions in order to function, rendering them ineffective in 
inclement weather. To address this research gap, we propose 
a new technique to estimate snow coverage so that existing 
and new ADAS features can be used during inclement weather. 
In this study, we use a single camera sensor and historical 
weather data to estimate snow coverage on the road. Camera 
data was collected over 6 miles of arterial roadways in 

Kalamazoo, MI. Additionally, infrastructure-based weather 
sensor visibility data from an Automated Surface Observing 
System (ASOS) station was collected. Supervised Machine 
Learning (ML) models were developed to determine the cate-
gories of snow coverage using different features from the 
images and ASOS data. The output from the best-performing 
model resulted in an accuracy of 98.8% for categorizing the 
instances as either none, standard, or heavy snow coverage. 
These categories are essential for the future development of 
ADAS products designed to detect drivable regions in varying 
degrees of snow coverage such as clear weather (the none 
condition) and our ongoing work in tire track detection (the 
standard category). Overall this research demonstrates that 
purpose-built computer vision algorithms are capable of 
enabling ADAS to function in inclement weather, widening 
their operational design domain (ODD) and thus lowering 
the annual weather-related fatalities.

Introduction

According to the Fatality Analysis Reporting System 
(FARS) encyclopedia by the National Highway Traffic 
Safety Administration (NHTSA), there were nearly 

103,172 fatal crashes from the year 2018-2020  in the 
United States [1]. Out of these fatal crashes, nearly 10% were 
related to inclement weather such as snow, ice, sleet, and rain. 
Similarly, during 2007-2016, weather-related vehicular crashes 
accounted for nearly 21% of all reported crashes annually 
resulting in 16% of crash fatalities and 19% of crash injuries 
throughout the United States [2]. It is really crucial to under-
stand how different weather conditions can affect the trans-
portation network. Fundamentally, adverse weather 

conditions can cause 1) Impairment of situational awareness 
and 2) Inhibitions to vehicular maneuverability [3]. Due to 
poor visibility caused by heavy rain, blowing dust or snow, or 
dense fog, multi-vehicle collisions can occur when drivers lose 
awareness of their position, location, and speed in relation to 
other cars. Automated vehicles can open the way for depend-
able and safe driving in any weather [4]–[7].

Nearly 94% to 96% of all auto accidents are caused due 
to human errors (speeding, aggressive/reckless driving, 
distracted driving, chemical impairment, and drowsy 
driving), which are preventable according to a study conducted 
by NHTSA in 2016 [8]. ADAS systems were created to automate 
driving tasks, improve aspects of the driving experience, and 
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increase safety and safe driving practices [9]. About 40% of 
all accidents in passenger vehicles can be prevented or signifi-
cantly reduced with the use of ADAS features including 
Forward Collision Warning (FCW), Automated Emergency 
Braking (AEB), Lane Departure Warning (LDW), Lane 
Keeping Assistance (LKA), blind spot warning assistance, and 
many more. [4, 10]–[12]. Furthermore, ADAS features such 
as FCW and AEB alone reduce front-to-rear crashes by nearly 
50% [6]. From the 1,853 driver injury crashes studied in [13, 
14], it was discovered that LDW and LKA systems were able 
to reduce head-on and single-vehicle crashes on roads at 
higher speed limits (45-75 mph) and visible lane markings by 
nearly 53%. Based on the statistics, ADAS features such as 
LDW, LKA, AEB, and FCW significantly cut down on colli-
sions caused by human and external variables [15].

One of the ways that ADAS improves safety is to provide 
vital information about the vehicle and its surroundings by 
classifying road lanes [16, 17]. Lane recognition is the founda-
tion of many driving assistance systems such as LKA, LDW, 
and Lane Centering Assist (LCA), specifically identifying lane 
markings. During snowy conditions, lane markings can get 
obscured or hidden which can render driving assistance 
systems ineffective. In reality, snow accumulation on highways 
frequently leads drivers to disregard lane positions and drive 
on different regions of the road as necessary, in other words, 
forming informal auxiliary traffic lanes [3]. The poor perfor-
mance of driver assistance systems in adverse weather condi-
tions, such as rain, snow, fog, and hail, is among the most 
crucial challenges in vehicle automation. Unfortunately, just 
like a human's vision, the sensors used by driving assistance 
systems can be negatively affected by inclement weather. Rainy 
and foggy conditions cause significant degradation in the 
performance of Camera, Radar, and LiDAR [18, 19]. The 
LiDAR will misdetect objects under rainy and snowy condi-
tions due to rain droplets, snow particles, and ice [20]. 
Similarly, Radar, which is used for many driver assistance 
systems such as adaptive cruise control (ACC) and AEB, has 
an issue with signal attenuation in the rain [18, 21, 22]. 
On-board vehicle cameras are essential in providing both the 
systems and the driver with crucial information. Cameras 
come standard in all vehicles with level 1 and level 2 autonomy 
[23]. Various sensors operate differently in various weather 
conditions, according to the literature review conducted in 
this section. To enable ADAS performance in inclement 
weather conditions and actively toggle between sensors based 
on environmental conditions, a method to determine the 
category of road conditions in inclement weather needs to 
be established so that purpose-built perception techniques 
can be deployed.

There are few studies in the literature that address the 
issue of estimating road weather conditions for inclement 
weather. One such study conducted in 2011 introduced a 
method of estimating road weather using a ML model trained 
with camera images and Road Weather Information Systems 
(RWIS) data [24, 25]. The results from this study indicate that 
the model was capable of achieving a 91% accuracy on the test 
set for classifying the road conditions into five different cate-
gories (dry, ice, snow, track and wet). This study utilized 
Principal Component Analysis (PCA) to determine which 
inputs contributed the greatest to model performance.  

The model used limited training data and had a biased dataset 
gathered from static images at intersections. Another study 
conducted by Qian proposes a system that categorizes road 
conditions using static images using a camera [26]. This study 
obtained an accuracy of 68% on classifying the road condi-
tions into dry, wet, and snow. However, this study only uses 
a dataset of 100 images with a 50-50 train test split. Having 
such a small dataset, specifically a small training set can lead 
to poor performance and generalization. The methods and 
results of these studies provide ways to estimate the weather 
conditions mainly for object-dependent ADAS purposes and 
do not talk about lane-dependent features such as lane lines, 
road type, and amount of snow coverage in the lane which 
are independent of any objects in the environment. 
Additionally, they only employ camera data using a small 
dataset as the input, and no additional input is provided to 
the models. Therefore, a more rigorous study of snow coverage 
estimation using a multi-input model is needed to move this 
research forward. It is crucial for estimating the road snow 
coverage in order to expand the ODD of ADAS and use algo-
rithms that detect the drivable region in snow-occluded lane 
lines as done in our previous studies [12, 27].

To address the need for real-time estimation of road snow 
coverage, the proposed method uses Machine Learning (ML) 
models that use camera data and infrastructure weather 
sensor data as inputs to predict road snow coverage. 
We recorded and labeled each image in different categories 
based on the subjective level of snow coverage on the road. 
The three different snow coverage categories were none, 
standard and heavy. The images were processed using feature 
engineering, and different image features were obtained. The 
inputs to the ML models were the image-level features and 
ASOS infrastructure weather sensor features. We tested the 
performance of the different models on key metrics such as 
accuracy, precision, recall, and F1 score. The goal of this work 
is to provide a robust snow coverage estimation method for 
ADAS perception systems using a single-camera sensor and 
infrastructure-based weather sensor data. The methods 
discussed in the next section talk about the details of the 
different feature sets, ML methods, and the overall perfor-
mance of the various models in classifying road snow coverage.

Methodology
In this section, we will first examine the drive cycle that was 
selected, the vehicle platform, and the equipment used, 
followed by a discussion of the methods to collect and prepare 
the data. Following that, several ML models will be developed 
and assessed.

Drive Cycle
The drive cycle consisted of the two-lane arterial roads in 
Kalamazoo, MI. The route was selected based on having low 
traffic volume, two lanes, clear visible lane lines, and occluded 
lane lines. Arterial roads receive snow level variation as they 
are plowed irregularly and have a low amount of traffic which 
results in varying amounts of snow coverage. The route 
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consisted of 5 different road sections, which were A, B, C, D, 
and E each one mile in length with different cardinal direc-
tions. To add variation to the dataset, the data was collected 
on different days with changing snow precipitation forecast 
through the 5 different road segments during the winter of 
2020-2021.

Vehicle Platform and Sensors
The Energy Efficient Autonomous Vehicles (EEAV) research 
vehicle platform, shown in Figure 2, was used to collect data. 
This is a 2019 Kia Niro and includes a forward-facing RGB 
camera, Polysync Drivekit, Neousys in-vehicle computer, 
vehicle Controller Area Network (CAN) bus interface, and a 
Mobileye camera. We used the forward-facing ZED 2 RGB 
camera from Stereolabs [28]. The ZED 2 is a widely available 
machine vision camera, which is available with a Software 
Development Kit (SDK) that provides greater functionality 
for our instrumented research vehicle. The ZED 2 provided 
us with the raw RGB images used to build the dataset. We have 
used the ZED 2 along with its SDK for our previous studies, 
but potentially any RGB camera could be used for this study 
[10, 12]. The images were captured at a resolution of 1280 x 
720 and at a frame rate of 30 frames per second

Infrastructure Weather Sensor
This study used historical weather data collected by the 
Automated Surface Observation System or ASOS station 
located at the Kalamazoo Battle Creek International Airport. 

ASOS is considered a “gold standard” observation, used widely 
in the atmospheric sciences [29]. The intention of ASOS was 
to provide reliable and useful automated weather observations 
in a cost-effective manner [30]. The ASOS dataset used 
contains weather data observations for the corresponding days 
of collected drive cycles. This data is published in one-minute 
intervals for parameters such as visibility, temperature, wind 
characterization, precipitation, and atmospheric pressure. 
While ASOS stations are capable of observing falling precipi-
tation, there are a number of issues that can lead to erroneous 
precipitation reports. These include the inability to recognize 
precipitation type for frozen or mixed precipitation events 
[31] and undercatch of snowfall amount or intensity in strong 
winds [32]. However, in the U.S., snowfall intensity is measured 
not by accumulation but by visibility, with light snow catego-
rized as >1 km visibility, moderate between 0.5 and 1 km 
visibility, and heavy snow less than 0.5 km visibility [33]. In 
order to calculate visibility, ASOS uses a sensor that gauges 
the air's clarity directly at the sensor in a condensed area. The 
visibility coefficient is derived based on the maximum distance 
the sensor can see. Due to the more reliable automated visi-
bility observations, for this study, we focused on the visibility 
coefficient. The visibility coefficient only serves as an addi-
tional input to the ML models and we are not interested in 
finding the relation between the raw dataset and the 
visibility coefficient.

Data Pipeline
Figure 3 shows the overall model development pipeline. This 
pipeline shows the different steps taken to achieve 
model results.

Data Selection and Filtering
We collected ~ 100,000 RGB images. The images were resa-
mpled from 30 fps to match the ASOS dataset. As the ASOS 
data was sampled every minute (0.167 Hz), we had to map the 
images with ASOS data based on the timesteps. Further 
quality control was taken into account and these images were 
assessed for poor quality such as over-exposed images from 
sun glare, windshield wiper obstruction, image noise, distor-
tion, etc. When finished the final dataset had a total of 20,883 
images spanning across the five road sections on different days.

 FIGURE 1  Road segments used for data collection during 
the winter of 2020-2021 in Kalamazoo, MI.

 FIGURE 2  (a) Kia Niro Instrumented Research Vehicle, (b) 
ZED 2 stereo camera.

 FIGURE 3  Overall model development pipeline.
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Labeling
A subjective method was used to place data from each road 
segment into three categories: none, standard, or heavy. 
We had collected the dataset and visually assessed each image 
for snow coverage. After looking at the entire dataset, we could 
find that all road segments fell into three main categories. 
Each of the road segments were assigned into one of these 
categories based on how much snow was covering the surface 
of the road. Figure 4 shows the three different snow conditions. 
Figure 4a shows the none condition, Figure 4b shows the 
standard condition, and Figure 4c shows the heavy condition. 
We labeled all the images in the dataset based on the subjective 
snow condition.

Feature Extraction
To build and train the ML models, we first needed to prepro-
cess the data and then extract features. Feature extraction 
transforms raw data into numerical features the model can 
process while retaining original data. This works better than 
applying ML to the raw dataset [34]. To start the process of 
feature engineering, the raw image was first resized to 
256 x 256 from its original dimensions of 720 x 1280. Resizing 
results in reduced computational load while training models. 
To further improve feature detection and reduce computa-
tional complexity, images were masked with a static Region 
of Interest (ROI) that only included the road surface as shown 
in Figure 5. The Road ROI mask (Figure 5b) was then fused 
with the raw image (Figure 5a) to output the Masked ROI 
(Figure 5c). The masked ROI contains less than 10% of the 
total pixels when compared to the raw image. Similar to our 
previous study, we decided to create different feature sets, each 
containing various image features, which will help in identi-
fying features that perform better compared to others. [10]

Images contain pixel-level color channel values which are 
contained in 3 dimensional arrays which contain the Red, 
Green and Blue values for each pixel (RGB). For this study 
we decided to use the RGB mean and standard deviation 

values as the image-level features. The RGB values change as 
the level of snow coverage changes in the image, with a lower 
road snow coverage, we have lower overall RGB intensities in 
the image and as the snow coverage increases the RGB intensi-
ties increase. These features strongly correlate with the 
changing snow coverage on the road.

Table 1 shows the different feature sets that were created 
for this study. We organized these features into sets where 
each set has its corresponding feature vector. For example, 
feature set 0 has three feature vectors which are the mean 
values for the red, green and blue color channels in the masked 
ROI image, feature set 2 has six feature vectors which are the 
mean (Equation 1) and standard deviation (std. dev) 
(Equation 2)
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values for red, green and blue color channels respectively. 
Feature set 3,4 and 5 include the ASOS visibility coefficient 
input along with the image-level features. Each feature set has 
its own feature array X, the shape of feature array X = (m × n) 
dimensions where m = number of images in the array and n 
= number of features. The feature array X is the input. Similarly 
label vector y = (m × 1) dimensions, where m is the number 
of images in array corresponding to the feature array X repre-
senting the subjective snow coverage, as mentioned in the 
labeling location section (none : 0,   standard : 1,   heavy : 2). 
Each element in the label vector maps the label to its corre-
sponding input from the feature array X. The dataset was split 
into 70 - 30% for training and testing.

 FIGURE 4  (a) none condition, (b) standard condition, and 
(c) heavy condition.

 FIGURE 5  (a) Raw Image, (b) ROI, and (c) Masked ROI.

TABLE 1 Included feature sets used in model development 
along with their array shapes.

Feature Set
Included Feature 
Vector

Train 
Array 
Shape 
(m = 
14,618)

Test 
Array 
Shape 
(m = 
6265)

0 (Img-level) R,G,B (mean) (14,618, 
3)

(6,265, 
3)

1 (Img-level) R,G,B (std. dev) (14,618, 
3)

(6,265, 
3)

2 (Img-level) R,G,B (mean), 
R,G,B (std. dev)

(14,618, 
6)

(6,265, 
6)

3 (Img-level + ASOS) R,G,B (mean), 
visibility 
coefficient

(14,618, 
4)

(6,265, 
4)

4 (Img-level + ASOS) R,G,B (std dev), 
visibility 
coefficient

(14,618, 
4)

(6,265, 
4)

5 (Img-level + ASOS) R,G,B (mean), 
R,G,B (std. dev), 
visibility 
coefficient

(14,618, 
7)

(6,265, 
7)
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Machine Learning Techniques
We evaluated different types of ML algorithms to test which 
models perform better in combination with the different types 
of feature sets. The six different ML models that were evaluated 
were: Decision Trees (dtrees), Random Forests (rforest), 
K-Nearest Neighbors (KNN), Logistic Regression, Support 
Vector Machines (SVM), and Naive-Bayes (naive). These 
models were selected based on their capabilities and demon-
strated performance for computing classification tasks for 
computer vision applications. [35]–[37].

Let us look at an overview of all the models used in this 
study and their computational capabilities. Dtrees and rforest 
work by making a series of logical decisions mapped as nodes 
on a tree. This offers insight into relevant features. Training 
these models is computationally heavy. Both decision trees 
and random forest work well with less number of features. 
Logistic Regression works by fitting a logistic curve to the data 
and works well on datasets in which there is minimal overlap 
on the classes. Naïve Bayes offers a relatively simple model 
and performs well on datasets with less features that are inde-
pendent of each other. Support Vector machines work by 
mapping the data points onto a space with more than two 
dimensions and then finding a hyperplane that groups them. 
K Nearest Neighbors is a simple algorithm that performs well 
in classification tasks. With our dataset k neighbors are used 
to label new data based on proximity to neighboring data-
point. KNN works well with large, noisy datasets. [38, 39]. The 
work in this paper was performed in Python using models 
provided by the open-sourced ”scikit-learn” python 
package [40]

Evaluation Metrics
The predicted outputs of the model ypred were compared with 
the ground truth labels y and then evaluated for various 
metrics. The metrics used for evaluation were prediction 
accuracy, precision, recall, F1 score, and average model 
compute time. Equations 3 to 6 show how these metrics are 
calculated using the four corners of the confusion matrix as 
shown below:

•• True Positive (TP) : no. of images classified correctly 
with respect to their snow coverage label

•• False Positive (FP) : no. of images classified incorrectly 
with respect to their snow coverage label

•• True Negative (TN) : no. of images classified correctly 
with respect to a negative label

•• False Negative (FN) : no. of images classified incorrectly 
with respect to a negative label

TP, FP, TN, and FN provide us with the different combi-
nations of predicted and actual values which are useful to 
calculate crucial performance evaluation metrics such as 
Accuracy, Precision, Recall and F1 Score. These Accuracy is 
the fraction of predictions the model got right which means 
the number of images were correctly classified as none, 
standard or heavy snow based on their condition. Precision 
measures the quality of a model's positive prediction. Recall 

displays the proportion of accurate positive predictions made 
among all possible positive predictions. Precision and recall 
together make up the F1 score.

	 Accuracy � �
� � �

TP TN

TP TN FP FN
	 Eq. (3)

	 Precision �
�

TP

TP FP
	 Eq. (4)

	 Recall �
�

TP

TP FN
	 Eq. (5)

	 F Score1 2�
�

�
�precision recall

precision recall
	 Eq. (6)

Results
The results of this research include an overview of the analyses 
conducted for image level features and ASOS weather data 
features as well as the results from the ML training for esti-
mating the snow coverage using different features as inputs. 
Results were obtained for a total of 35 different ML models. 
When using only image-level features, the order of the best-
performing ML models was: SVM, Naive-Bayes, Logistic 
Regression, KNN, Random Forests, and Decision Trees. When 
we use variation in the feature sets as input to the model, such 
as feature set 5 which includes all image-level features and the 
snow visibility, we obtained the best-performing model. The 
results indicate that using image-level features along with the 
visibility coefficient from the ASOS dataset improves the 
performance of the model in key metrics such as accuracy, F1 
score, and precision by a significant margin irrespective of 
the model used. To look at one such example, Figure 6 high-
lights the most important feature in feature set 5 for dtrees. 
The feature importance technique rates the input features 

 FIGURE 6  Feature importance for Dtrees with the feature 
set 5.
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according to how well they can predict the target variable. 
We used skicit learn’s Plot Feature Importance method to get 
the feature importance. The two most important features for 
this model and feature set combination are the blue mean 
value from the image-level feature and the visibility coefficient 
from the ASOS dataset. This implies that both image-level 
features and infrastructure weather sensor data input play an 
important role in enhancing the models performance which 
is consistent with the results from other models as well. (Table 
2 in the appendix for all results).

To further illustrate the importance of adding the weather 
sensor data as an input, we obtained the confusion matrix for 
dtrees with all image-level features (feature set 2) in Figure 
7b, and all image-level and infrastructure weather sensor data 
(feature set 5) in Figure 7a. The vertical axis shows the true 
labels and the horizontal axis shows the predicted classes. The 
diagonal shows the classifications for each of the snow 
coverage conditions as the first element in the diagonal shows 
the True Positives for class 0 (none), class 1 (standard), and 
class 2 (heavy). The confusion matrix heatmap shows that 
feature set 5 outputs more TP’s for each class than the feature 
set 2.

Figure 7 shows the comparison between the 6 different 
models for feature set 2 and feature set 5. As seen in Figure 8 
all of the models perform at least ~67% better with both 
image-level and weather data features (feature set 5) when 
compared to only image-level features (feature set 2). The best 
performing model for feature set 2 was svm which tied with 
logistic regression, and naive. Dtrees with feature set 2 
performed poorly when compared to the other models. 
Contrastingly, adding the snow visibility input from ASOS 
improved the model performance significantly for all models 
which is shown by the blue bars. The best performing model 
for feature set 5 is dtrees.

Figure 9 shows Accuracy, and F1 Score by the models 
using all features (feature set 5). Dtrees achieved an average 
compute time of 9.51 seconds and rforest achieved an average 
compute time of 0.09 seconds. For feature set 5 the best 
performing models are random forest and decision trees both 
achieving 98.8 % Accuracy and 98.8% F1 score. As the number 
of features increase, both rforest and dtrees perform signifi-
cantly better on the same dataset.

Some feature set combinations perform better when 
compared to their individual feature sets. For example, as 

shown in Table 2 (Appendix), feature set 1 and feature set 2 
yield similar results in key metrics such as accuracy, precision, 
recall and F1 Score. When we add weather data inputs to 
feature set 1 and 2, they make feature sets 3 and 4. We can 
observe that adding the weather data inputs significantly 
improved the performance of feature set 4 (originally feature 
set 2) when compared to the performance of feature set 3 
(originally feature set 1). This shows that feature set 4 (RGB 
std. dev + weather data) outperformed feature set 3 (RGB 
mean + weather data). This implies that RGB std. dev is a better 
feature when compared to RGB mean in the context of 
our study.

So to summarise the results, both the image-level 
features and weather sensor input are equally important as 
shown in Figure 6,7,8, and 9. A critical advantage of the 
image data is that is that it is precisely local to the car, 
although the weather sensor provides excellent area-wide 
information that may impact road visibility, the image data 
from the vehicle can be used to accurately determine, with 
input from the general weather data, what the road condi-
tions are in the current location of the vehicle. Adding 
easily available weather data from existing infrastructure 
is a highly effective means of improving our ability to 
estimate local road conditions.

 FIGURE 7  Confusion matrix heat map for (a) Dtrees with 
feature set 5, and (b) Dtrees with feature set 2.

 FIGURE 8  Feature Set Accuracy Comparison between 
feature set 2 (Image data alone) and feature set 5 (Image and 
Weather Data).

 FIGURE 9  Comparison of Accuracy, Precision, Recall, and 
F1 score by model for feature set 5.
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Conclusions
In this study we derived a method of estimating the snow 
coverage on the road using a single camera sensor and infra-
structure weather data inputs using ML. Firstly, data was 
collected using the instrumented research vehicle along 
arterial roads in Kalamazoo, MI. This data was then processed 
and cleaned for model development. Additionally, infrastruc-
ture based weather sensor data such as snow visibility was 
acquired from ASOS. Features were extracted from the 
processed camera data and ASOS dataset to further create 
different features sets. These feature sets were used as inputs 
to the different supervised ML models. In total we had 35 
different model-feature sets combinations. We compared and 
analyzed the performance of all models based on metrics such 
as Accuracy, Precision, Recall, and F1 score. The best-
performing model using all image-level features (feature set 
2) yielded an accuracy of 52.8% whereas the best-performing 
model with both image-level features and weather data feature 
(feature set 5) had an accuracy of 98.8%. This demonstrates 
that both image-level features and weather sensor inputs 
equally improve the performance of the models.

Overall this study demonstrates that we can estimate the 
snow coverage on the roads using a custom dataset with just 
one camera sensor and infrastructure weather data. 
Categorizing snow coverage will enable ADAS products to 
operate in inclement weather conditions. This study lays the 
foundation for broadening the ODD of AVs which will also 
positively impact the operation of AVs, minimizing crash 
injuries and fatalities. Additionally, higher resolution 
on-vehicle weather sensor data as inputs in conjunction with 
image data would further enhance the model's performance. 
We could get accurate local weather information from an 
on-vehicle weather sensor such as the MARWIS which 
provides us with dynamic road condition information [41]. 
Adding additional features available in the ASOS dataset along 
with the on-vehicle weather sensor data such as friction, ice 
percent, road condition, water film height, and precipitation 
would help in improving the model's performance. Future 
work for this study will include estimating snow coverage 
using data from both infrastructure and on-vehicle sensor 
data and using DL models.
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LC - Lane-Centering
FCW - Frontal Collision Warning
LDW - Lane Departure Warning
LKA - Lane-Keeping Assist
AEB - Automated Emergency Braking
ODD - Operational Design Domain - domain an autonomous 
system is designed to operate within
AI/ML - Artificial Intelligence / Machine Learning

CNN - Convolutional Neural Network
DL - Deep Learning
FPS - Frames Per Second
RGB - Red, Green, Blue
MARWIS - Mobile Advanced Road Weather 
Information Sensor
FARS - Fatality Analysis Report System

Appendix
TABLE 2 All results for the 35 ML model feature set combinations

ML_method Feature_set Accuracy Average Images Computed Per Second Precision Recall IoU F1_Score
dtrees 0 0.387 4865268 0.387 0.387 0.240 0.387
knn 0 0.459 47328.52 0.459 0.459 0.298 0.459
logistic 0 0.528 23737412 0.528 0.528 0.359 0.528
naive 0 0.528 5954524 0.528 0.528 0.359 0.528
rforest 0 0.434 53057.19 0.434 0.434 0.278 0.434
svm 0 0.528 2729.719 0.528 0.528 0.359 0.528
dtrees 1 0.382 4853586 0.382 0.382 0.236 0.382
knn 1 0.468 48293.94 0.468 0.468 0.305 0.468
logistic 1 0.528 19138612 0.528 0.528 0.359 0.528
naive 1 0.528 6002128 0.528 0.528 0.359 0.528
rforest 1 0.470 56281.48 0.470 0.470 0.307 0.470
svm 1 0.528 2690.322 0.528 0.528 0.359 0.528
dtrees 2 0.377 5070883 0.377 0.377 0.232 0.377
knn 2 0.466 44479.39 0.466 0.466 0.304 0.466
logistic 2 0.528 18959101 0.528 0.528 0.359 0.528
naive 2 0.528 3402475 0.528 0.528 0.359 0.528
rforest 2 0.464 60098.56 0.464 0.464 0.302 0.464
svm 2 0.528 2468.811 0.528 0.528 0.359 0.528
dtrees 3 0.381 4973938 0.381 0.381 0.236 0.381
knn 3 0.462 46111.47 0.462 0.462 0.300 0.462
logistic 3 0.528 22306719 0.528 0.528 0.359 0.528
naive 3 0.528 6158264 0.528 0.528 0.359 0.528
rforest 3 0.461 58234.34 0.461 0.461 0.299 0.461
svm 3 0.528 2701.033 0.528 0.528 0.359 0.528
dtrees 4 0.988 9002163 0.988 0.988 0.975 0.988
knn 4 0.898 45209.99 0.898 0.898 0.814 0.898
logistic 4 0.855 13237942 0.855 0.855 0.746 0.855
naive 4 0.841 5610016 0.841 0.841 0.725 0.841
rforest 4 0.989 91570.39 0.989 0.989 0.978 0.989
svm 4 0.861 6712.247 0.861 0.861 0.755 0.861
dtrees 5 0.988 9513872 0.988 0.988 0.975 0.988
knn 5 0.915 43620.82 0.915 0.915 0.844 0.915
logistic 5 0.837 10435788 0.837 0.837 0.720 0.837
naive 5 0.837 4001418 0.837 0.837 0.720 0.837
rforest 5 0.988 86083.72 0.988 0.988 0.977 0.988
svm 5 0.861 6126.979 0.861 0.861 0.755 0.861
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