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Abstract  

 

Advanced Driver Assistance Systems (ADAS) typically utilize cameras to provide limited automation 

features to improve driver safety. ADAS utilizes computer vision (CV) to extract vehicle surrounding 

information. However, when the vehicle is operating in bad weather (e.g., obstructed lane lines), ADAS 

products fail. We have developed a new technique to detect tire tracks which was evaluated in conditions 

of variable snow coverage and lane line occlusion. Previously we focused on using basic machine learning 

(ML). We expanded this to a convolutional neural network (CNN). A custom dataset was collected using 

an instrumented automated research vehicle. The CNN model had an intersection over union (IoU) score 

of 89% in detecting tire tracks and outperformed the traditional ML model on key metrics (precision, recall, 

and more). Overall we have demonstrated that this method works as an end-to-end pipeline to detect tire 

tracks and expand the operational design domain of ADAS. 
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Introduction 

 

Advanced Driver Assistance Systems (ADAS) such as Forward Collision Warning (FCW), Automatic 

Emergency Braking (AEB), Lane Departure Warning (LDW), Lane-keeping Assistance (LKA), blind-spot 

warning assistance, and many more have the potential to prevent or mitigate approximately 40% of all 

passenger vehicle crashes [1]. Because human error causes the majority of road accidents, ADAS was 

created to automate and improve aspects of the driving experience in order to increase safety and safe 

driving practices. If the vehicle crosses the lane and no turn signals or steering movements are detected, 

lane-keeping systems detect reflective lane markings in front of the car and inform the driver via various 

sorts of audio, tactile, and/or visual cues [2]. From the 1853 driver injury crashes studied in [3,4], it was 

discovered that LDW/LKA systems were able to reduce head-on and single-vehicle crashes on roads with 

higher speed limits (45-75mph) and visible lane markings by 53%. The greatest benefit of such systems, 

according to [5], is at lower operating speeds (5-20 mph), where between 11 and 23% of drift-out-of-lane 

incidents and 13 to 22% of seriously to fatally wounded drivers could have been avoided if the technology 

was used. FCW and AEB alone cut front-to-rear collisions by nearly half [6]. By 2023, the market for 

ADAS is expected to be worth more than $30 billion [7] where ADAS will not only be confined to safety 

but will also help increase vehicle efficiency [8–13].  

 



 
 

 
 

Despite these successes of ADAS technology, there is a glaring unresolved problem: inclement weather. 

During 2007–16, weather-related vehicular crashes accounted for 21% (1,235,145) of all reported crashes 

annually resulting in 16% (5,376) of crash fatalities and 19% (418,005) of crash injuries throughout the 

United States [14]. Fundamentally, adverse weather conditions can cause impairment to situational 

awareness and inhibitions to vehicular maneuverability which can occur in a variety of ways depending on 

the type of adverse weather [14].  

Developing techniques for the operation of ADAS in inclement weather is a current research challenge. 

Because there are significant ramifications for safety as outlined above, the initial goal is to recognize and 

classify road lanes during inclement weather in order to aid in the location of both the ego vehicle and other 

vehicles [15]. The challenge is that inclement weather such as heavy rain, snow, or fog lowers the maximum 

range and signal quality for ADAS sensors such as cameras and it occludes the high contrast lane markers 

[15]. This is a well-documented problem and  has been demonstrated in cameras and lidars in particular 

[16]. A specific instance of this issue can be found in [3], where it is stated that LDW/LKA was only able 

to reduce head-on and single-vehicle crashes on roads with operating speeds of 45-75 mph by 53% if the 

roads had visible road markings and specifically "the road surface was not covered by ice or snow." New 

sensor technologies are getting better in these performance areas but are still far from addressing the issue 

of reliable ADAS operation in inclement weather  [8]. For now, to achieve a feasible research scope for this 

paper, we will focus on only snowy weather. 

There are just a few key studies that address the issue of reliable ADAS operation in snowy weather. The 

first study developed a custom snowy weather dataset and determined the driveable region through semantic 

segmentation [17]. When evaluated on a non-snow dataset, the model had a mean Intersection over Union 

(mIoU) of 80%, when trained on a snowy dataset it dropped to 19% and when both models were combined, 

it provided a mIoU of 83.3%. However, the model still must be improved and made more robust because it 

considers the entire road rather than just the Region of Interest (ROI), which can be computationally 

expensive. The second study employed a CNN model with a specified architecture and used sensor fusion 

between the camera, lidar, and radar [18]. The results showed that there was an increase in driveable region 

detection (mIoU of 81.35%) and non-driveable region detection (mIoU of 93.85%) after fusing the 

information from various sensors and testing it on the dataset. This is an improvement, but it comes with 

drawbacks, the most significant of which is that the method requires additional sensors, which increases 

the cost and computational power required. Additionally, this method, like the first study, examines the 

entire driveable region, rather than just a ROI [18]. In the third relevant study, a method to improve the 

detection in adverse weather conditions using “You Only Look Once” (YOLO) was developed by merging 

it with a CNN and the Federated Learning (FL) framework [19]. This was tested on the Canadian Adverse 

Driving Conditions (CADC) dataset. The method resulted in the average test accuracy of the model, gossip, 

and centralized approaches which are the three different methods they use in their study to be 90.4−95.2%, 

82.4−88.1%, and 71.4−76.16%, respectively. The FL method, which utilizes an edge server, is the 

foundation for this model. After training a global YOLO CNN model on a publicly available dataset, the 

edge server sends the initial parameters to the AVs. These parameters are then used by the AVs to locally 

train the model on their own dataset. The number of AVs collecting data, the connection between the edge 

server and each vehicle, and the computational power in each vehicle all contribute to the FL method's 

training time. Furthermore, the vehicle chassis has been equipped with eight cameras, increasing the cost 
[19]. All the above studies provide methods for improving the detection of objects and regions in the entire 

driveable space and not necessarily the lane information, these studies are both computationally and 



 
 

 
 

monetarily costly and rely on multiple sensors. None of these studies demonstrates high accuracy driveable 

region detection for snow-covered roads using a single camera sensor that is implementable in modern 

ADAS products. 

To address this research gap, we are utilizing a computationally light, cost-effective, and high-accuracy 

method of extracting driveable region information using a single camera which is a ubiquitous automotive 

sensor [16,17]. ML techniques such as CNN have established themselves as a dominating methodology in 

modern computer vision algorithms and applications, as well as in segmentation research. Based on our 

previous study for detecting tire tracks in snowy weather conditions [20], the ML model required a lot of 

image pre-processing and feature engineering, which is addressed in this study by using a CNN. In this 

study, both supervised ML semantic segmentation models and CNNs were developed. These methods were 

then compared for detecting tire tracks in the snow. The paper addresses the following novel topics: 

1) Custom data acquisition method for tire track data collection and labeling  

2) Snow tire track image preprocessing and feature extraction  

3) Tire track identification CNN architecture  

4) CNN and ML model performance comparison for snow tire track identification 

Methodology 
In this section, we will first discuss the methods we used to collect and prepare the data. The data that has 

been processed is then used to develop models. 

 

Data Collection 

The route we chose consisted of two-lane arterial roads in Kalamazoo that had the road characteristics we 

were looking for. This drive cycle replicated roads that are rarely cleaned after snowfall and are maintained 

much less frequently than highways and other multi-lane roads. We collected the data during the 2020 

winter season. The lanes had snow occlusion with distinct tire track patterns, with the tire tracks visible to 

show the tarmac below and the lane line markings covered in snow. Data was collected using our Energy 

Efficient and Autonomous Vehicles (EEAV) Lab’s instrumented automation development platform shown 

in Fig. 1. This development platform is built upon a drive-by-wire capable 2019 Kia Niro and the relevant 

sensor for this study is a forward-facing ZED 2 RGB stereo camera made by Steroelabs. The ZED 2 has a 

120-degree field of view wide-angle lens that captures images and videos using stereo vision, although only 

one of the lenses was used for this study. The camera was set to record video at a frame rate of 29 frames 

per second with a resolution of 1280 x 720 pixels. 

 

The ZED 2 was connected to the in-vehicle computer and data was collected as *.mp4 files over arterial 

roads with visible tire tracks and occluded lane lines. From these video files, a total of 1,500 individual 

frames were extracted for ML training.  Fig. 1 shows an overview of this data collection process. The 1500 

frames of images were divided into three batches, each with 500 images. Different parameters such as 

exposure, resolution, and occlusion were assessed in the images. Clear tire tracks with distinct tarmac and 

snow boundaries were chosen from the images. 

 



 
 

 
 

 
Figure 1. Flow diagram for the data collection, resampling of the data, extracting 1500 RGB Images and 

corresponding Tire Track Labels, and labeling of data  

Data Preparation 

The images that were previously segregated into different batches of frames are then used for labeling. 

Every frame’s tire tracks were labeled by hand using an open-source, online tool known as the Computer 

Vision Annotation Tool (CVAT). Images were uploaded in respective batches and  the labeled dataset of 

each batch was exported with their corresponding raw images using the format: CVAT for images 1.1. This 

process was again repeated for all the batches. 

Each exported dataset contained the raw images and an Extensive Markup Language (XML) file which 

contained the attributes for the labels, such as the position of the tire-track with their corresponding pixel 

location on the image, image file name, and their assigned tags (tire-track, road, road-edge boundary). This 

process can be updated and more labels can be added according to the use case. The exported labels were 

then further assessed for post-processing and training the ML and CNN model. The overall data preparation 

pipeline is described in the next section 

Model Development Pipeline 

To develop the ML model we must preprocess the data and then perform feature extraction. The process of 

converting raw data into numerical features that the model can process while preserving information from 

the original data set is referred to as feature extraction. This is done because it produces significantly better 

results than applying machine learning to the raw dataset directly. 

To improve feature detection and reduce the computational cost, images were masked with a ROI that 

includes just the road surface and not the entire frame. As stated in [17,18], it is seen that different methods 

are used to detect road surfaces with high accuracy with an array of sensors. We implemented these road 

surface detections by using a static ROI in which the pixels inside the ROI are the road surface and every 

other pixel outside the ROI is considered to be the background. Fig. 2. shows the process to extract the 

masked images for the ROI. 

 

The raw images were first resized to the desired shape from their original size of 1280 x 720. In our case, 

we chose the images to be of shape 256 x 256. The road ROI mask was obtained from the raw image to 

reduce the number of pixels used for training and reduce the computational cost. 



 
 

 
 

 

Figure 2. The feature extraction procedure, which begins by extracting only the frames within the ROI and 

then extracts the features from those pixels. 

 
The Road ROI only consists of 3099 pixels which are only ~ 5% of the total pixels in the raw image. The 

ROI mask was then fused with the raw image to obtain all the pixels within the ROI. This will in turn be 

the input to the model. The different features extracted from the masked images include the red, green, blue, 

grayscale pixel values, and the pixel X, Y locations as done in the previous study [20]. 

The different feature vectors shown in Table I are grouped into different sets and are individually selected 

to be the final input to the model. The results from these will show the features that contribute the most to 

the model and yield the highest performance. The model was split into a 55 - 45% train test split. The entire 

model was trained using a single input array X having the shape = ((m*p), n) where m is the total number 

of images, p is the number of pixels in the ROI of each image (3099 pixels for the 256x256 sized images), 

and n is the number of feature vectors in the array. An overview of this process is shown in Figure 3.  

Table I. Feature Set Properties 

Feature set  
Included Feature 

Vector 

Train Array 

Shape (m = 1200) 
Test Array Shape (m =300) 

0 Gray (3718800,1) (929700,1) 

1 Gray X loc, Y loc (3718800,1) (929700,1) 

2 Red, Green, Blue (3718800,3) (929700,3) 

3 
Red, Green, Blue, 

X loc, Y loc 
(3718800,5) (929700,5) 

 

Machine Learning Implementation and Evaluation 

As seen in our previous study [20], we trained various ML models from the input features and their 

respective labels. The input feature array X and label vector y were extracted from the image preprocessing 

and feature extraction block and then fed as inputs to the ML model. Six different models were evaluated 

to determine the feature set/model combination for the highest performance metrics. Models that were 

evaluated include K - Nearest Neighbor (KNN), Naive-Bayes, Decision Trees (Dtrees), Random Forest, 

Linear Regression, and Logistic Regression. These models were chosen for their characteristics and 

capabilities in commuting binary classification [21–23]. 

The outputs from the predicted model 𝑦𝑝𝑟𝑒𝑑 were compared with ground truth for evaluation. The metrics 

used for evaluation were the intersection over union (IoU), mIoU, pixel prediction accuracy, precision, 

recall, F1 score, and frame per second (FPS). These metrics were evaluated based on the ability to draw 

strong conclusions from the model's performance [21]. Below are the equations demonstrating these 



 
 

 
 

calculations as well as the four corners of a confusion matrix, which define the true positives, true negatives, 

false positives, and false negatives. 

 

Figure 3. A flow diagram for training the ML model. The features recovered from the raw photos are stored 
in the input feature array X, and the label vector y contains the pixel status as either tire track (1) or non-tire 

track (0). 

● True Positive (TP): no. of pixels classified correctly as in a tire track 

● False Positive (FP): no. of pixels classified incorrectly as in a tire track 

● True Negative (TN): no. of pixels classified correctly as not in a tire track 

● False Negative (FN): no. of pixels classified incorrectly as not in a tire track 

Accuracy =  
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

IoU (Jaccard 

Index) 
=

|𝐴∩𝐵|

|𝐴∪𝐵|
=

|𝐴∩𝐵|

|𝐴|+|𝐵| − |𝐴∩𝐵|
  (2) 

mIoU 
= 1/𝑛 ∗ ∑𝑛

𝑖=1

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑢𝑛𝑖𝑜𝑛
= 1/𝑛 ∗ ∑𝑛

𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
, where n = # of 

classes 
(3) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

F1 Score = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (6) 

Following the creation of the ML models, we discovered that this method, in our instance, necessitates a 

significant amount of feature engineering or image pre-processing. The raw images are cropped and turned 

to grayscale. Similarly, the segmentation masks are cropped to generate the ROI mask, and the X and Y 

pixel locations from the segmentation masks are saved to feed into the model, as explained in our image 

pre-processing and feature extraction sections. Furthermore, the ROI is static, which means it is fixed for 

each image and does not account for changing road curvature. overall this process necessitates a substantial 

level of effort, which CNN will address. 



 
 

 
 

Convolutional Neural Network Implementation and Evaluation 

Deep learning has been shown to perform significantly better on a wide range of tasks, including image 

recognition, natural language processing, and speech recognition. Deep networks, when compared to 

traditional ML algorithms, scale effectively with data, do not require feature engineering, are adaptable and 

transferable, and perform better on larger datasets with unbalanced classes [24].  

 

CNNs are a type of deep neural network whose architecture is designed to automatically conduct feature 

extraction thus eliminating this step [25]. CNN's create feature maps by performing convolutions to the 

input layers, which are then passed to the next layer. In contrast to basic ML techniques, CNNs can extract 

useful features from raw data, eliminating the need for manual image processing [26,27]. 

As previously stated, our ML model required feature engineering and did not function as an end-to-end 

pipeline for tire track identification. To make this process easier and to improve the overall accuracy we 

have implemented a CNN. 

 

 
Figure 4. U-network architecture (example for 32x32 pixels in the lowest resolution) [28]. A multi-channel 

feature map is represented by each blue box. The number of channels is indicated on the box's top. The x-y 

size is indicated at the box's lower-left edge. White boxes represent feature maps that have been copied. The 

arrows represent the various operations. 
 

Architecture  

The U-net architecture has demonstrated excellent performance in computer vision segmentation [29]. 

CNN's basic premise is to learn an image's feature mapping and use it to create more sophisticated feature 

maps. This works well in classification problems since the image is turned into a vector, which is then 

classified. In image segmentation, however, we must not only transform a feature map into a vector but 

also reconstruct an image from this vector [29]. U-net architecture was developed specifically for this 

problem and was first introduced in a medical application [29]. Its structure is depicted in Figure 4. 

 

The U-net architecture learns the image's feature maps while converting it to a vector, and the same mapping 

is used to convert it back to an image. The left side of the U-net architecture is known as the contracting 



 
 

 
 

path, while the right side is known as the expansive path. The number of feature channels/filters doubles 

after each downsampling block to learn more complicated structures from the previous layer's output, while 

the image size decreases. This path consists of numerous contraction blocks. Each block takes an input and 

applies it to a 3 × 3 convolutional layer with a rectified linear unit (ReLU) activation function. The padding 

is set to 'same' which is followed by a 2 × 2max-pooling layer for downsampling. We start off with 32 

feature channels and double them with every contraction block until we reach 512 feature channels, which 

is when we move onto the expansive path. Each block in the expansive path (shown on the right side of the 

image) is composed of two 3 × 3 convolution layers and one 2 × 2 up-sampling or up-convolution layer 

with a ReLU activation function and padding set to 'same'. The input is appended by the feature maps of 

the matching contraction layer with each block in the up-convolution, which is known as concatenating and 

is indicated by the gray arrow between the two layers. The number of feature channels is halved with each 

block in this layer. A 1 × 1 convolution layer is applied in the final layer, with the number of feature maps 

equaling the number of required classes/segments. In addition, in both the expansive and contraction paths, 

we add a dropout layer between each convolution layer. This reduces model overfitting by randomly 

shutting down the necessary number of neurons in that layer [30,31]. 

 

Metrics 

As mentioned in the ML section, the different metrics are shown which are used to evaluate the model's 

performance. From equation (1), the accuracy shows the fraction of predictions our model got right. But 

accuracy alone doesn’t tell the complete story when working with a class-imbalanced dataset [32] In our 

dataset, there is a great amount of imbalance between the tire tracks and the background, which is why 

accuracy is not a good metric for evaluation. This means that the inaccuracy of minority classes is 

overshadowed by the accuracy of the majority classes when compared to pixel-wise accuracy. IoU, which 

is also known as Jaccard Index is substantially more suggestive of success for segmentation tasks, especially 

when the input data is significantly sparse. When training labels contain 80-90% background and only a 

tiny fraction of positive labels, a basic measure like accuracy can score up to 80-90% by categorizing 

everything as background. Because IoU is unconcerned about true negatives, even with extremely sparse 

data, this naive solution will never arise. IoU computes the overlapping region for the true and anticipated 

labels by comparing the similarity of finite sample sets A, B as the IoU [33]. As stated in equation (7), T 

stands for the true label image and P stands for the prediction of the output image. This is used as a metric, 

providing us with a more accurate means of measuring IoU in our model's segmentation region. 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 (𝐼𝑜𝑈) =
|𝑇∩𝑃| (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝)

|𝑇∪𝑃|     (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛)
                                                                                                            (7) 

 

Loss Function 

We use two loss functions in our model. Loss functions are used to reduce loss and the number of incorrect 

predictions made. The loss function Binary Cross-Entropy (BCE) is used in binary classification [34] The 

BCE function is: 

𝐵𝐶𝐸 =  −𝑡1𝑙𝑜𝑔(𝑠1)  − (1 − 𝑡1)𝑙𝑜𝑔(1 − 𝑠1)                                                                                                              (8) 

where 𝑡1 denotes the label/segmentation mask and 𝑠1 denotes the label's predicted probability across all 

images. We use BCE because our model needs to predict the segmentation mask of the tire track. 



 
 

 
 

The Jaccard Loss, which is equal to the negative𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 from equation (7), is the second loss 

function used. A higher IoU value indicates that there is more overlap between the true label and the 

predicted label, but the loss function is concerned with minimizing IoU, which is why we use a negative 

Jaccard Index as the loss function to reduce loss. 

Convolutional Neural Network Model Training 

The model was trained using the input images and their associated segmentation masks. We used google 
colab pro’s cloud GPU to train our model. The ML model's input feature vector array was used with feature 
set 2 (RGB images). The shape of the training array is (𝑚 × 𝑛 × 𝑝 × 𝑙)  =  (1300,256,256,3) where m is 
the number of images in the training set, n is the image height, p is the image width and l are the number of 
channels in the image. In our case, we resize the images to the desired size in feature extraction (6 b.) and 
use feature set 2, which uses the image's RGB values. We can use the raw RGB images without any pre-
processing because no image pre-processing is required.  

We consider stochastic gradient descent (SGD) and Adaptive moment estimation (Adam) for our 
optimizers. Optimizers update the model in response to the loss function's output, attempting to minimize 
the loss function's output. SGD begins with a random initial value and continues to take steps with a learning 
rate to converge to the minima. SGDs are simple to implement and fast for problems with a large number 
of training examples but have a disadvantage in that they necessitate extensive parameter tuning [35] Unlike 
stochastic gradient descent, Adam is computationally efficient and is better suited to problems with very 
noisy/or sparse gradients because it computes adaptive learning rates [36] For image segmentation, Adam 
is thought to be a very powerful loss function [37], which is why we chose Adam as our optimizer. BCE 
and Jaccard loss are two different loss functions that we use which is covered in section 8.c. The batch size 
is set to 16 and the model is run for 25 epochs with an early callback to save the model at the best epoch 
for the validation loss. For testing, training, and validation, the predicted images are thresholded, so 
anything above 50% is saved as a correct prediction. There are 7,760,097 trainable parameters in total. 

Convolutional Neural Network Model Evaluation   

In contrast to our ML models, the model's predicted output was an image. The predicted segmentation 
masks were then assessed using a variety of metrics. We test the model for IoU, precision, recall, and F1 
score, as mentioned in the metrics section. Equations (1-6) show how the confusion matrix is used to 
perform these calculations. Figure 5 shows the outputs from CNN. 

 
Figure 5. CNN output (The raw image is on the left, the labeled segmentation mask is in the middle, and the 

predicted segmentation mask from the CNN is on the right)  



 
 

 
 

Results  

When we run the model with the loss function set to BCE and Adam as the optimizer, we see that the 

model's accuracy increases to ~98%. However, as discussed in the metrics section, accuracy is not a good 

metric for datasets with a lot of class imbalance, which is why it produces such high values. Therefore we 

must also test the IoU. 

Figure 6a shows that the model with Jaccard loss function has an IoU score of 93% and a validation IoU of 

88%. Figure 6b shows the IoU of the model with the loss function set to BCE is 89 %, and the validation 

IoU is 84%. This means that, when compared to BCE, the Jaccard loss function does a better job of finding 

the intersection/overlapping region for the segmentation masks between the true and predicted. Even though 

this is true, BCE is still regarded as a good performer because it is only 3% less accurate. The two models 

have an average frame rate of nearly 350 FPS. 

 

Figure 6a. Jaccard loss function, Jaccard Index 

(IoU) as the metric 

Figure 6b. BCE loss function, Jaccard Index (IoU) 

as the metric 

The results of the best CNN and ML models are summarized in Table II. Dtress with feature set 1 was 

found to be the model with the best performance in our prior study. We compare the metrics for that model 

to our CNN model with feature set 2 since we don't have to perform any preprocessing in our case. 

TABLE II. CNN AND ML METRICS  

Model  
Feature 

set 
Accuracy Precision  Recall 

F1 

Score 
FPS 

CNN  2 0.98 0.96 0.95 0.96 350.32 

Dtress  1 0.90 0.905 0.911 0.908 1084.1 

 

We observe that the CNN model performs better than the ML model without any image preprocessing on 

metrics like accuracy, precision, recall, and F1 score, shown in Figure 7.  

 

Limitations of this study include comparing metrics such as mIoU with the previous ML models. The ML 

model with Dtress and feature set 1 obtains a mIoU of 83 %, whereas the CNN achieves a mIoU of 65 %. 

This could imply that the ML model is more accurate at predicting tire tracks, but it is not the whole story.   



 
 

 
 

 
Figure 7. Precision, Accuracy, Recall and F1 score metric comparison between CNN and Dtress.  

A static ROI for the ML model was employed, which means that the ML model only receives a portion of 

the raw image and the segmentation masks. The mIoU calculates the IoU for each class before averaging 

the results across all of them. Because we just feed a section of the image into the ML model rather than 

the complete image, it performs better at detecting these tire tracks only in that precise region, which implies 

the model will not do well if the road geometry shifts or if the model is tested on the entire image. The 

CNN, on the other hand, does not require a ROI but instead takes in the full image as input, lowering the 

mIoU because it is no longer simply looking at the ROI but the complete image. Another explanation for 

CNN's lower mIoU is the significant class imbalance (more background pixels and fewer tire track pixels), 

as well as the fact that deep neural networks require more training data than ML models which means to 

improve the mIoU we will need to train the model on larger datasets. Another way to attain a higher mIoU 

would be to crop the ROI for images and segmentation masks in the same way as our ML models, and then 

use that as the input to the CNN. However, this would necessitate preprocessing and feature engineering, 

which is one of the drawbacks from the ML models addressed in this paper. 

Conclusion  

This study addresses the research gap of driveable region detection for snow-covered roads using a single 

camera sensor that is implementable in modern ADAS products. We proposed a new method for extracting 

the drivable region for snowy road conditions when the lane lines are occluded by instead focusing on 

identifying tire tracks. First data was collected on our instrumented vehicle and then the data was processed 

by extracting the frames from the videos, segmenting them into batches, and labeling them with CVAT.We 

have showcased how this information was used in the model development process. Using just the raw image 

and no image pre-processing or feature extraction, we evaluated a U-net-based CNN for IoU, Accuracy, 

Feature set, Recall, F1 score, and FPS. The IoU score for the model with the Jaccard loss function was 93%. 

The model had an accuracy of 98%, a 95% recall, a 96% precision, and a 96% F1 score. Furthermore, we 

found a significant improvement in these metrics when compared to the ML model from the previous study. 

By feeding in the raw image and obtaining the predicted tire tracks, this method offers a full end-to-end 

solution for detecting drivable regions in snowy road conditions. 

Overall, this study demonstrates that drivable region detection in inclement weather is feasible using current 

technology in a single camera. The results can be improved by improving image processing and tuning the 



 
 

 
 

CNN. Beyond this study, there are many other research gaps in inclement weather automation that need to 

be addressed to combat the significant loss of life that comes from these scenarios. 
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