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Abstract

Accurate perception of the driving environment and a 
highly accurate position of the vehicle are paramount 
to safe Autonomous Vehicle (AV) operation. AVs 

gather data about the environment using various sensors. For 
a robust perception and localization system, incoming data 
from multiple sensors is usually fused together using advanced 
computational algorithms, which historically requires a high-
compute load. To reduce AV compute load and its negative 
effects on vehicle energy efficiency, we propose a new infra-
structure information source (IIS) to provide environmental 

data to the AV. The new energy–efficient IIS, chip–enabled 
raised pavement markers are mounted along road lane lines 
and are able to communicate a unique identifier and their 
global navigation satellite system position to the AV. This new 
IIS is incorporated into an energy efficient sensor fusion 
strategy that combines its information with that from tradi-
tional sensor. IIS reduce the need for camera imaging, image 
processing, and LIDAR use and point cloud processing. 
We show that IIS, when combined with traditional sensors, 
results in more accurate perception and localization outcomes 
and a reduced AV compute load.

Introduction

Typical Autonomous Vehicle (AV) systems can 
be  divided into four main subsystems: perception, 
localization, path planning, and control. For percep-

tion, AVs use input from multiple sensors to extract informa-
tion about the driving environment and locate current and 
future states of stationary and dynamic objects using cameras, 
radio detection and rangings (RADARs), and light detection 
and rangings (LIDARs). Localization is the process of locating 
the vehicle globally with respect to world coordinates using 
inputs from sensors and information sources like global navi-
gation satellite system (GNSS), inertial measurement unit 
(IMU), odometry, and/or high definition (HD) maps. 
Incoming data from AV sensors and information sources are 
typically fused and interpreted using advanced sensor fusion 
algorithms for highly accurate perception and localization 
subsystems, which requires an in-vehicle computer with very 
high operating frequencies and multiple processors. Given 
the outputs from perception and localization subsystems, the 

path planning subsystem finds an optimal and safest trajec-
tory for the AV to reach its desired destination. The control 
subsystem outputs required acceleration, torque, and steering 
angle values to follow the trajectory obtained through path 
planning. Power drawn from all the AV sensors including the 
in-vehicle computer, and computational load from sensor 
fusion algorithms for perception and localization, and path 
planning and control executions reduce the energy efficiency 
of an AV. Combining alternative sensor fusion methodologies 
with optimal energy management techniques [1, 2, 3], AV 
energy usage can be significantly reduced.

Lane detection, which can be considered as an output of 
perception process, is a crucial task for AVs and advanced 
driver assistance systems (ADAS). With advancements in deep 
learning in recent years, a number of deep learning based lane 
line detection methods have been proposed recently. Lane and 
drivable region detection methods based on deep convolu-
tional neural networks (DCNNs) [4, 5] predict whether each 
pixel obtained through semantic segmentation belongs to a 
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lane line or not. Lane detection methods based on deep recur-
rent neural networks (DRNNs) recursively process the input 
image signal and build full connection layers between them 
for status propagation [6]. These methods demand higher 
computational power as a larger and deeper convolutional 
network is required to extract high–level semantic informa-
tion. The input vector dimensions for pictures to be processed 
by DRNNs are particularly big since these networks require 
sequential data to obtain the sequence token dependencies 
that aid in categorization.

As an alternative, infrastructure information sources 
(IISs) can be used to facilitate perception and sensing by 
supporting vehicle–to–infrastructure (V2I) information 
exchange while reducing the required computational load. 
Stephens et al. [7] proposed safety applications capturing 
relevant data from roadside infrastructure sensors and 
in-vehicle sensors to determine potential crash hazards. 
Applications described here had an infrastructure- and a 
vehicle-based components which issued advisories to make 
the driver aware of the hazards in time to take action to 
prevent the crash.

An energy–efficient infrastructure sensor, chip–enabled 
raised pavement marker (CERPM) can be used to detect lane 
line and drivable region for AVs improving perception while 
reducing the compute load [8]. Integrated transmission tech-
nology fits inside commercially available Raised Pavement 
Markers (RPMs) as shown in Figure 1. CERPMs placed on the 
road have capabilities for data processing and wireless data 
exchange to support cooperative driving automation (CDA). 
CERPMs transmit GNSS coordinates of their location to the 
on–board vehicle receiver which transmits information to the 
AV control system.

CERPM application for lane and drivable region detec-
tion includes an energy savings of at least 90% when compared 
to a commercial solution [8]. To make the most of this applica-
tion, the update frequency for the lateral offset measurements 
coming from the camera can be lowered as DCNNs demand 
higher energy use. An energy efficient sensor fusion strategy 
can be established if the update frequency of camera measure-
ments are lowered. In this approach, we do not lose high level 
semantic information obtained from camera, and can still 
provide accurate positioning information by relying on IIS, 
like CERPM, at a reduced compute load.

In this paper, we develop a sensor–fusion strategy for AV 
lane keeping using inputs from a traditional imaging sensor: 
camera and infrastructure sensors. We estimated the lateral 
offset of the ego–vehicle from the center of the lane using 
camera, CERPMs, and a combination of both. For an ego-
vehicle in a lane, ΔY, as shown in Figure 2 is the perpendicular 
distance between a line that passes through the center of the 
lane and a line that passes through the center of gravity of the 
ego-vehicle. The main contribution of this paper lie in 
the following:

 1. Real world like sensory data is generated using 
CARLA simulator [9]. CERPMs were simulated inside 
the CARLA simulator. Image messages from camera 
sensor and GNSS messages from CERPMs were 
published through Robot Operating System 
(ROS) nodes.

 2. Kalman Filter is applied to predict ΔY using 
information from CERPMs and camera messages.

 3. Camera–CERPM group sensor fusion is employed in 
harmony to predict ΔY.

 4. Camera–CERPM asyncronous sensor fusion is 
further evaluated to predict ΔY.

The remainder of the paper is organized as follows. The 
methodology section reviews the lane detection methods used 
and data fusion methodologies. The result section reports the 
experiments performed and their results. The conclusion 
section concludes our work and brief ly discusses about 
possible future work.

Methodology
In this section, we describe lateral lane offset estimation using 
inputs from camera and CERPMs seperately. Sensor data-
fusion methodologies are formulated and tested in the 
CARLA simulator.

 FIGURE 1  Transmitter Setup for CERPM

 FIGURE 2  Ego-vehicle lane information
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Lateral Offset Estimation 
Using Camera
Lateral offset estimation starts at lane line detection. For lane 
detection, an encoder-decoder DCNN, UNet [10] was used. 
U-Net is a fully convolutional network which has been demon-
strated to be applicable to various semantic segmentation 
purposes. Raw images of size 512x512x3 were converted into 
grayscale images with a single channel and passed through 
the U-Net segmentation architecture as shown in Figure 3.

The output of the U-Net architecture is a masked image 
where lane pixels are identified after threshold processing to 
remove associated interference. Step-by-step explanation of a 
series of steps performed to get the lateral offset from the 
masked image are described below and illustrated in Figures 
4 and 5.
 1. Perspective transform to extract region of interest 

(ROI): The input to this stage is the masked image 
shown in Figure 4(b) which is converted to a top 
down view of the ROI using perspective transform as 
shown in Figure 4(d) and reduce subsequent 
processing. The four vertex of the region to 
be processed were identified and are shown in Figure 
4(c) and Equation 1 was used to map the relationship 
between pixel (x, y) of the top down image and pixel 
(u, v) of the masked image.
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translation vector and [c1 c2] represents the projection 

vector. Perspective transformation eliminates the 
majority of image’s interference and projects the lane 
lines to a relatively parallel position to make subsequent 
processing easier [12].

 2. Lane fitting: Traditional lane search algorithms are 
based on Hof linear transformation [13] which 
require input images of high resolution and does not 

adapt to real scenes with high interference due to 
poor recognition effect. A bottom-up scanning 
approach known as sliding window algorithm [14] 
was utilized to identify and track the lane lines as 
shown in Figure 5(a). This method preserves the 
coordinate of the non-zero pixels inside the windows 
and adjust the position of the next window 
accordingly. Quadratic curves are fitted along the 
right and left lines using the least square method.

 3. Lateral offset estimation: After lane fitting, a 
coordinate system was established where the vertical 
center line of the image is considered as X-axis and 
horizontal line at the bottom of the image is 
considered as Y-axis. Assuming the center of the 
vehicle is the center of the image and the origin of the 
Y-axis at the center of the lane and considering d1 and 

 FIGURE 3  U-Net Architecture for image segmentation [11]

 FIGURE 4  Input to the U-Net architecture, the masked 
output, selected region of interest, perspective transformation 
of selected region.

 FIGURE 5  Step 2 for lateral offset estimation showing 
sliding window method and inverse perspective transform of 
the warped image.
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d2 as the Y-pixel locations of the bottom left and 
bottom right lines respectively, the pixel location of 
the lane center d3 is calculated as the average of d1 and 
d2. The lateral offset, ΔY can be calculated using:

 �Y d MPP� � �3  (2)

where MPP is the meters per pixel in the horizontal direc-
tion to convert the distance units from pixels to meters.

Lateral Offset Estimation 
Using CERPMs
CERPMs transmit GNSS location (latitude, longitude, and 
altitude) of their location to the vehicle computer. Global 
GNSS messages from CERPMs were converted into cartesian 
coordinates (x, y) using:

 
x R

y R

� � � � �
� � � � �

cos cos

cos sin

� �
� �

 (3)

where λ and ϕ are the difference in target and current 
latitude and longitude in radians respectively and R is the 
radius of the earth. Assuming the ego–vehicle current location 
in cartesian coordinates as the origin, the CERPMs are located 
in the ego-vehicle frame of reference. Polynomial curves of 
degree 2 are fitted along the right and left lanes using the least 
square method. The lateral offset, ΔY can be calculated using:

 �Y
d d� �4 5

2
 (4)

where d4 and d5 are the y-coordinate of the left and right 
lanes respectively in the ego-vehicle frame of reference. Figure 
6 shows the detected left and right lanes from the 
CERPM information.

Kalman Filter Based 
Estimators
Estimation of lateral offset at each timestep is input to the 
path-planning and controls sub-system for AV lane-keeping. 
Kalman filter, an optimal estimator based on a recursive 

computational methodology for estimating the state of a 
discrete–data controlled process from typically noisy measure-
ments was used to model the lateral offset over time in the 
y-direction. The linear time invariant system subject to 
random process noise w(k) and measurement noise v(k) and 
uncertain random initial condition can be  modeled as 
Equations 5 and 6.

 x k Ax k Bu k Gw k�� � � � � � � � � � �1  (5)

 z k Hx k v k� � � � � � � � (6)

where A,B, G, z, and H denote system matrix, input 
matrix, process noise gain matrix, sensor measurement model 
matrix and measurement respectively. Kalman filter involves 
a series of steps for state estimation which are reviewed in the 
Appendix section (Equations 13-17). The linear time invariant 
system specific to our measurements for lateral offset estima-
tion is shown in Equations 7 and 8 where Δy is the lateral 
offset from the center line and Vy denotes the lateral velocity 
of the ego-vehicle.
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Group Sensor Method for 
Camera–CERPM Fusion
Group sensor method combines measurements for all sensors 
and measurement model into a single sensor and its formula-
tion is based upon synchronized measurements. If the lateral 
offset measurements coming from the camera and CERPMs 
can be synchronized, a group sensor method can be formu-
lated to fuse information coming from camera and CERPMs. 
The measurement model for linear time invariant system for 
group sensor method is shown in Equation 9. z1(k) and z2(k) 
are the offset measurements coming from camera and CERPM 
respectively and v1 and v2 are corresponding measurement 
noise for each sensor.
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Asynchronous Sensor Fusion 
for Camera–CERPM
To investigate energy efficient sensor fusion strategy, the 
frequency of camera sensor (frames per second) can 
be decreased keeping the frequency of CERPM information 
same as before, an asynchronous estimator can be formulated. 
For asynchronous measurement cases, the time between 1, 2, 
…., k – 1, k may not be constant. If we consider TS,k as the 

 FIGURE 6  Lane line detections from CERPM information.

Downloaded from SAE International by Zachary Asher, Friday, April 28, 2023



 5VEHICLE LATERAL OFFSET ESTIMATION USING INFRASTRUCTURE INFORMATION

current time step which is the time between k – 1 and k, the 
process model over TS,k is shown in Equation 10.
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where ATs, k, BTs, k, GTs, k, HTs, k need to be evaluated at each 
k as TS,k is not constant.

Results
The simulation setup is discussed first, and then the results 
for estimates using different sensor fusion strategies 
are provided.

Simulation Setup
CARLA is an open source simulator we utilized for devel-
oping, validating, and testing algorithms for AV systems. 
Carla offers a simulation setting with a variety of sensor speci-
fications, environmental factors, and automobiles, among 
other things. It gives the user the power to design environ-
ments that can be tested and validated for autonomous/ADAS 
driving behaviors. To facilitate two way communication with 
Robot Operating System (ROS), CARLA ROS bridge can 
be used to get information from the CARLA server. For the 
camera sensor, the sensor update rate, image size, field of view, 
and spawn points are customizable inside the CARLA simu-
lator. CERPMs that transmit GNSS message of their location 
were modeled in the simulator and the sensor update rate was 
kept at constant 20 Hz for all of the test cases. CERPMs were 
spawned at both left and right lanes and the adjacent distance 
between the CERPMs was kept at a length of 5 m. A vehicle 
was spawned in Town03 of the CARLA simulator and a route 
was chosen to evaluate the lateral offset estimators formulated 
in the methodology section. Figure 7 shows the longitudinal 
and lateral position of the vehicle when travelling on the 
chosen route.

CARLA simulator has waypoints which are 3-D directed 
points corresponding to a lane. The location of the center of 
the lane was calculated as the midpoint between the right and 

left lanes. CARLA simulator publishes pose information to 
ROS as odometry messages. The true lateral location of the 
ego-vehicle was subtracted from the lateral location of the 
center of the lane to get the ground truth data.

Lane Lateral Offset Estimation 
Setup
Lateral offset estimators were developed using a single sensory 
outputs from individual sensors. First, the lateral offset esti-
mator was modeled for the camera. The measurement noise 
associated with lateral offset measurement can be divided as: 
(a) measurement noise associated with the camera sensor itself 
(b) measurement noise associated with the mask generated 
by U-Net. As the image obtained through the CARLA simu-
lator is undistorted, the measurement noise associated with 
the camera sensor is 0. The mean intersection over union 
(mIoU) of the trained U-Net model for mask generation was 
98%. For 512 x 512 x 3 channel image, the measurement noise 
in meters was calculated as:

 � p y mIoU W� � �� �1  (11)

 � �� �y p yD� 0 (12)

where W is the width of the image, σpΔy stands for the 
standard deviation of the offset in pixels, σΔy denotes the 
standard deviation of the offset in meters, and D0 represents 
the meter per pixel value for Town03 in CARLA simulator 
(given as 0.4 cm). v(k) for camera measurements was modeled 
as a normal distribution with zero mean and a standard devia-
tion of 4 cm as calculated using Equations 11 and 12.

The overall measurement noise v(k) associated with 
CERPM and GNSS derived offset measurements can be deter-
mined by adding var(X) and var(Y) since CERPM and GNSS 
measurements are independent where var(X) and var(Y) are 
measurement noise associated with CERPMs and GNSS 
respectively. Modern GNSS systems incorporate real-time 
kinematic (RTK) positioning which uses carrier based ranging 
and provides position estimates up to centimeter level 
accuracy [15]. Likewise, preloaded GNSS points in the 
CERPMs are assumed to be measured using a GNSS sensor 
that is capable of providing RTK corrections. Measurement 
noise of mean 0 with 1 cm standard deviation was added to 
CERPM measurements and the in-vehicle GNSS sensor, hence 
modelling the overall v(k) as a normal distribution with mean 
0 and standard deviation of 2 cm.

Process noise, w(k) for linear time invariant systems 
formulated in Equations 7 and 8 is the lateral acceleration of 
the ego-vehicle. A lateral acceleration value of 0 mean and 
0.1g standard deviation was used to model w(k) for both 
offset measurements.

Lane Lateral Offset Estimation 
Simulation Results
To evaluate the lateral offset estimators developed in the meth-
odology section, ground truth lateral offset data was obtained 
from the simulator. Lateral offset estimators using single 

 FIGURE 7  Road section for lateral offset estimation tests in 
Town03 of the CARLA simulator.
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sensory inputs were modeled first and are shown in Figures 
8(a) and 8(b). Measured values, estimates, and ground truth 
offsets are plotted and the root mean square error (RMSE) for 
measured values and estimates were calculated. Measured 
values had an RMSE of 1.65 cm and estimates had an RMSE 
of 1.58 cm for model based on CERPM offset measurements. 
Likewise for the camera offset measurement model, the RMSE 
of measured values was 3.01 cm and the RMSE for estimates 
were 2.10 cm.

A time synchronizer function in ROS within the 
message filters utility library takes in messages of different 
types from multiple sources and outputs them only if it has 
received a message on each of those sources [16]. After 
message synchronization, the group sensor model described 
in Equation 9 was applied to estimate the lateral offset of the 
ego-vehicle. RMSE of the fused output using group sensor 
method was 1.52 cm.

Ego-vehicle obtains continuous information from the 
CERPMs with a very low compute load associated with it. 
On the other hand, raw image output needs to undergo a 
series of steps before outputting the lane offset. With added 
functionalities from the CERPM, the frequency of image 

messages per second can be decreased which will decrease 
the computational load associated with image processing. 
The camera update rate was decreased to 5 frames per second 
from 20 frames per second and the asynchronous model 
shown in Equation 10 was used to obtain lateral offset esti-
mates. Figure 10 shows the comparison of lateral offset esti-
mates obtained from asynchronous fusion with camera 
measurements, CERPM measurements, and the ground 
truth measurements. The RMSE of fused output using asyn-
chronous sensor fusion was 1.55 cm. This method produced 
lateral offset estimations that were nearly as accurate as those 
produced by group sensor method while decreasing the 
computational need associated with image processing by 4 
times as the camera update rate was decreased from 20 
frames per second to 5 frames per second for the asynchro-
nous sensor fusion method. This translates into an approxi-
mate reduction of compute load power of 4 times for image 
processing as shown in Table 1.

 FIGURE 8  Lateral offset estimators based on single 
measurement input.

 FIGURE 10  Lateral offset estimator based on asynchronous 
fusion of CERPM-Camera measurements

 FIGURE 9  Lateral offset estimator based on group 
sensor method
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Conclusions
This work presented the development of lateral lane offset 
measurement estimators based on inputs from the camera 
sensor, CERPMs, and combinations of both. Four different 
estimators were modeled and tested in a road section of 
CARLA simulator: camera alone, CERPM alone, group sensor 
fusion, and asynchronous sensor fusion. The RMSE of the 
offset measurements when compared to ground truth were 
within 2.2 cm. Group sensor method had the lowest RMSE 
among the models tested. When compared to asynchronous 
sensor fusion, RMSE of group sensor method is lower by 
0.03 cm but the computational load associated with image 
processing in group sensor method is estimated to be four 
times more than the asynchronous method. Asynchronous 
fusion allows for the fusion of highly accurate lateral offset 
measurements from CERPMs, which have a higher update 
rate, with image-based offset measurements, which have a 
lower update rate, for improved lane keeping while preserving 
high-level semantic information and conserving energy.

In the near future, lateral lane offset estimators modeled 
in the CARLA simulator will be tested in real-world scenarios. 
A control strategy based on lateral lane offset measurements 
will be developed. Data fusion from other IISs like HD maps 
and radar retroreflectors will be evaluated for more accurate 
offset measurements. Developed lateral offset estimators and 
control strategy will be tested in a variety of situations, such 
as on rural roads, inclement weather, and in locations with 
poor GNSS coverage. Additional testing will include a wider 
variety of measurement noises, as could be expected in the 
real world.

The ego-vehicle receives data from the CERPMs wirelessly 
using the LoRa communication protocol. The lateral lane 
offset would be  affected by communication impairments 
between the ego-vehicle and the CERPMs on the road. Future 
studies will simulate failure case scenarios where a portion of 
the CERPMs are turned off while estimating the lateral lane 
offset to determine the impact of such communication disrup-
tions. In these situations, estimated lane lines will be evaluated 
for goodness of fit before being used or not. For the purposes 
of this study, the on-board GNSS receiver is simulated as a 
contemporary GNSS system that includes RTK and offers 
location estimates with a precision of up to 2 cm. In the future, 
lateral lane offset measurements will be estimated when simu-
lating a traditional GNSS system which typically has a higher 
measurement error.
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Definitions, Abbreviations
AV - Autonomous Vehicle
CERPM - Chip–Enabled Raised Pavement Marker
ROS - Robot Operating System
GNSS - Global Navigation Satellite System
DCNN - Deep Convolutional Neural Networks

DRNN - Deep Recurrent Neural Networks
CDA - Co-operative Driving Automation
ROI - Region of Interest
HD - High Definition
IMU - Inertial Measurement Unit

Appendix A
Kalman filter involves five steps which are shown in Equations 
13 to 17 [17].

 M k A P k A G WGk k
T

k k
T� � � �� � �� � � �1 1 1 11  (13)

where M is the prediction error covariance matrix.

 x k k A x k k B u kk k| |�� � � � �� � � �� �� �1 1 1 11 1ˆ  (14)

 K k M k H H M K H Vk
T

k k
T� � � � � � � �� ��1

 (15)

where K is the Kalman filter gain.

 P k I K k H M kk� � � � � �� � � � (16)

where P is the estimate error covariance matrix.

 x̂ k k x k k K k z k H x k kk| | |� � � �� � � � � � � � �� ��� ��1 1  (17)
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